Photosynthetic responses of *Larrea tridentata* to a step-increase in atmospheric CO$_2$ at the Nevada Desert FACE Facility

*Department of Biological Sciences, University of Nevada, Las Vegas, NV 89154–4004, U.S.A.
†Department of Biological Sciences, Rutgers University, Newark, NJ 07102-1811, U.S.A.
‡Department of Environmental Resource Sciences, University of Nevada, Reno, NV 89557, U.S.A.
§Department of Biology, California State University, San Bernardino, CA 92407, U.S.A.
¶Department of Environmental Studies, University of California, Santa Cruz, CA 95064, U.S.A.
**Department of Biochemistry, University of Nevada, Reno, NV 89557, U.S.A.
††Biological Sciences Center, Desert Research Institute, Reno, NV 89512, U.S.A.

(Received 1 June 1999, accepted 4 November 1999)

Of all terrestrial ecosystems, the productivity of deserts has been suggested to be the most responsive to increasing atmospheric CO$_2$. The extent to which this prediction holds will depend in part on plant responses to elevated CO$_2$ under the highly variable conditions characteristic of arid regions. The photosynthetic responses of *Larrea tridentata*, an evergreen shrub, to a step-increase in atmospheric CO$_2$ (to 550 μmol mol$^{-1}$) were examined in the field using Free-Air CO$_2$ Enrichment (FACE) under seasonally varying moisture conditions. Elevated CO$_2$ substantially increased net assimilation rate ($A_{\%5}$) in *Larrea* during both moist and dry periods of the potential growing season, while stomatal conductance (g_s) did not differ between elevated and ambient CO$_2$ treatments. Seasonal and diurnal gas exchange dynamics in elevated CO$_2$ mirrored patterns in ambient CO$_2$, indicating that elevated CO$_2$ did not extend photosynthetic activity longer into the dry season or during more stressful times of the day. Net assimilation vs. internal CO$_2$ (A/C_i) responses showed no evidence of photosynthetic down-regulation during the dry season. In contrast, after significant autumn rains, A_{max} (the CO$_2$ saturated rate of photosynthesis) and CE (carboxylation efficiency) were lower in *Larrea* under elevated CO$_2$. *In situ* chlorophyll fluorescence estimation of *Larrea* Photosystem II
efficiency (F_v/F_m) responded more to water limitation than to elevated CO$_2$. These findings suggest that predictions regarding desert plant responses to elevated CO$_2$ should account for seasonal patterns of photosynthetic regulatory responses, which may vary across species and plant functional types.

© 2000 Academic Press

Keywords: elevated CO$_2$; FACE; *Larrea*; Mojave Desert; Nevada; photosynthetic down-regulation; stomatal conductance; water stress

Introduction

Water-limited arid and semi-arid systems are expected to show potentially dramatic responses to increased levels of atmospheric CO$_2$ and associated climate change (Smith *et al*., 1997). Simulations have shown that elevated CO$_2$ can stimulate productivity to a greater extent under water-limited conditions than in more mesic ecosystems (Melillo *et al*., 1993; Parton *et al*., 1994). This is primarily a result of elevated CO$_2$ minimizing stomatal limitations on photosynthesis, although non-stomatal limitations could be reduced as well (Hunt *et al*., 1996; Knapp *et al*., 1996). Thus, for aridland species active during seasonal dry periods, elevated CO$_2$ may result in greater relative increases in photosynthesis than during wet periods, and possibly contribute a greater proportion to total annual primary production. This is the case in tallgrass prairie, where elevated CO$_2$ increases the proportional productivity of warm-season grasses during dry years, a direct result of improved water status and enhanced photosynthetic rates (Knapp *et al*., 1993; Owensby *et al*., 1993; Hamerlynck *et al*., 1997). A similar response also appears to occur in annual grasslands of California (Jackson *et al*., 1994; Field *et al*., 1997).

Elevated CO$_2$ can directly stimulate photosynthesis by overcoming diffusional limitations and decreasing the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the primary carbon-fixation enzyme (Sage & Sharkey, 1987; Long, 1991). However, a wide variety of plants show reduced CO$_2$-saturated rates of photosynthesis (A_{max}) and carboxylation efficiency (CE) following exposure to elevated CO$_2$ (Sage *et al*., 1989; Sage, 1994; Jacob *et al*., 1995). This down-regulation of photosynthesis would be ecologically important if it balances resource acquisition and utilization by plants (Stitt, 1991). Down-regulation is thought to be a function of the relative strengths of source/sink relationships (Thomas & Strain 1991; Stirling *et al*., 1997) that eventually affect photosynthetic gene and protein expression (Griffin & Seemann, 1996). Down-regulation is known to be sensitive to water and nutrient availability (Huxman *et al*., 1998a; Sims *et al*., 1998), temperature (Lewis *et al*., 1996; Stirling *et al*., 1997) and species-specific growth patterns (Stirling *et al*., 1997). Also, under conditions of high light, high temperature, and low stomatal conductance, elevated CO$_2$ may ameliorate photoinhibition (Long, 1991; Huxman *et al*., 1998b). However, some studies show that down-regulated plants have reduced the capacity for dissipation of excess light energy (Roden & Ball, 1996). Therefore, for highly variable and stress-prone systems like deserts, the potential for down-regulation needs to be assessed under contrasting environmental conditions to develop predictions regarding future productivity at elevated CO$_2$.

Larrea tridentata Cav. (Zygophyllaceae), commonly known as creosotebush, is the dominant perennial shrub of North American warm desert ecosystems. As an evergreen, it is physiologically active during all times of the year (Bamberg *et al*., 1975; Smith *et al*., 1997), and both water and nitrogen availability strongly limit its productivity under field conditions (Lajtha & Whitford, 1989). *Larrea* is thus a model organism to study how desert plants may respond to elevated CO$_2$ under the contrasting wet/dry and nutrient availability conditions that typify desert systems. Here we present a study using Free Air
CO₂ Enrichment (FACE; Hendrey & Kimball, 1994) that assessed the field responses of mature Larrea shrubs to elevated CO₂ under naturally varying soil moisture and temperature regimes.

Based on previous observations, we tested several hypotheses. First, elevated CO₂ should stimulate net photosynthesis in Larrea during times of the year when environmental conditions are conducive to positive net CO₂ assimilation (hypothesis 1). Second, due to the purported water-saving benefits of plant growth at elevated CO₂, the evergreen Larrea should show enhanced gas exchange activity extended into the summer dry season (hypothesis 2). Third, photosynthetic down-regulation will be less pronounced in this desert shrub during dry conditions (hypothesis 3). In dryland environments, drought has been shown to diminish photosynthetic down-regulation and sometimes promotes up-regulation in elevated CO₂-grown plants (Oechel et al., 1995; Huxman et al., 1998a). And fourth, reductions in the photochemical efficiency of Photosystem II function (as a measure of photoinhibition) will be less pronounced during drought in Larrea under elevated CO₂ compared to ambient atmospheric levels (hypothesis 4) (Roden & Ball 1996; Huxman et al., 1998b).

Materials and methods

FACE site description

Fumigation of an intact Mojave Desert ecosystem commenced on 28 April 1997 on the Nevada Test Site, a National Environmental Research Park, using Free Air CO₂ Enrichment (FACE) technology (Hendrey & Kimball, 1994). Nine 25-m diameter circular plots were established, three at elevated CO₂ (set point of 550 μmol mol⁻¹; ‘elevated ring’), three ambient rings, and three non-ring controls (Jordan et al., 1999). Ambient CO₂ averaged 360 μmol mol⁻¹, both day and night, at this remote desert site. All plots were similar in overall species composition, density, and cover. Fumigation occurs continuously, except when wind speeds exceed 8 m s⁻¹ over a 5 min period (ca. < 5% of the time). A computer-controlled algorithm opens and closes valves on 32 2-0-m high PVC risers connected to a circular above-ground plenum that surrounds the plot. CO₂ is injected into an ambient air stream created by a large circulating fan attached to the plenum. Under calm conditions (< 0-1 m s⁻¹) every other valve is opened, while at greater wind speeds, upwind valves are opened so that CO₂ moves with the airstream across the plot, and downwind valves are closed. This protocol maintains CO₂ concentrations within ± 5% of the targeted set point over a 5 min averaging period. Plants were accessed from a suspended, moveable platform attached to a pivoting 22-m long rotating aluminum catwalk supported 2-2 m above ground level. In order to avoid microclimate effects created by air exiting the risers, plants located less than 1 m from the risers were not sampled. A comprehensive description of this facility, its operations, and site characteristics can be found in Jordan et al. (1999), and at the NDFF web site: http://www.unlv.edu/Colleges/Sciences/Biology/Climate_Change_Research/

Seasonal and diurnal gas exchange and water potentials

Following a 24 mm rain storm on 12 June 1997 (prior to 12 June, the Mojave Desert experienced a pronounced climatic drought), mid-morning (08 00–11 00 h) net CO₂ assimilation and stomatal conductance to water vapour were measured weekly through the summer for Larrea tridentata using a Li-COR 6400 (Li-COR Inc., Lincoln, NE, U.S.A.) open-flow portable photosynthesis system. Ambient humidity and temperature conditions were maintained in the cuvette by entering values measured after shading the
open cuvette for 5 min into the control software. Cuvette CO₂ was set to that of the treatment plot being sampled (550 µmol mol⁻¹ for elevated blowers, 360 µmol mol⁻¹ for ambient blowers and non-blower controls) by mixing ambient air with CO₂ from an internal CO₂ injection system. Two plants were sampled and values pooled for a ring mean (n = 3 rings) used in statistical analysis.

Diurnal gas exchange in _Larrea_ was measured on 19 June and 16 July, one week and one month after a 24-mm rainfall event, respectively. Measurements were made on two _Larrea_ plants per plot, starting shortly after sunrise and passing once through each treatment combination (9 rings) four times during the day, from 05 30 h to 20 00 h.

Midday plant water potential (ψ) was determined using a Scholander-type pressure chamber (Soil Moisture Stress Inc., Santa Barbara, CA, U.S.A.). Two shoots from different _Larrea_ in each ring were harvested and immediately measured, with the subsequent ψ values pooled to give a plot mean.

Photosynthetic responses

Response curves of net photosynthesis to internal CO₂ concentration (A/C_i) were made on _Larrea_ in the field between April and October 1997. Measurements were made in late spring during a protracted dry season, with less than 8 mm of rain received from February to May, as well as during the summer/early autumn monsoon season after separate rain events of 24, 25 and 20 mm. One plant per treatment plot (n = 3 per treatment) was sampled repeatedly throughout this period.

A/C_i curves were made using a Li-COR 6400 programmable, open-flow gas exchange system. Cuvette temperature was held at 25°C at relative humidities of 15 to 25%. This resulted in leaf temperatures of 25 to 29°C in spring and fall, and 29 to 34°C in summer, with corresponding leaf-to-air vapour pressure deficits of 2.8–3.2 kPa and 3.1–3.8 kPa, respectively. All measurements were made under saturating photosynthetic photon flux densities (PPFD) using ambient light (800 to 1800 µmol m⁻² s⁻¹ PPFD) or an external high intensity LED red light source (1500 µmol m⁻² s⁻¹ PPFD). Side-by-side comparisons of these light sources showed no differences in A/C_i responses of _Larrea_ in a glasshouse (T. Huxman, unpublished data). Measurements were made from 08 00 to 12 00 h to avoid diurnal changes in photosynthetic activity and stomatal closure. Cuvette CO₂ concentrations (C_a) were set by mixing CO₂ from an internal source and ambient air. Shoots were exposed to 5 min of 200 µmol mol⁻¹ CO₂ to stimulate stomatal opening. C_a was reduced to 75 µmol mol⁻¹, then raised incrementally to 2000 µmol mol⁻¹. C_i at each C_a was calculated using the equations of von Caemmerer & Farquhar (1981). Nonlinear least-squares regression (Sigmaplot version 4-0, Jandel Scientific, San Rafael, CA, U.S.A.) using an exponential model from Jacob _et al._ (1995) was applied to estimate CO₂-saturated photosynthetic rate (A_max) and mesophyll carboxylation efficiency (CE).

Rubisco assays

Leaf samples for Rubisco analysis were taken concurrent with A–C_i measurements for _Larrea_ from shoots adjacent to gas exchange measurements, and immediately preserved in liquid N₂. Tissue was harvested on 20 May and 29 September 1997, ca. 3.5 months and 1 month following rain. Stems and dead leaves were removed prior to grinding in a mortar. About 0.15 g of leaves were ground in 1.5 ml buffer containing 100 mM Bicine pH 7.8, 5 mM MgCl₂, 1 mM EDTA, 5 mM DTT, 0.1% (v/v) Triton X-100, 25 mM KCl and 20% (w/w) polyvinylpolypyrrolidone. Extracts were filtered through Miracloth and centrifuged for 1 min at 10,000 g. Rubisco catalytic sites were determined by immunoprecipitation, as described by Evans & Seemann (1984).
Chlorophyll a fluorescence

In situ chlorophyll fluorescence (F70/Fm) was used to assess the efficiency of excitation energy transfer within Photosystem II in *Larrea*. F70/Fm was measured in May (3-5 months without rain), July and October of 1997 (each ca. 1 month after a major rain event). Three plants per plot were dark-adapted for 1 hour by wrapping the terminal shoot in aluminum foil. F70/Fm was determined using a pulse-amplitude-modulated (PAM) fluorimeter (Model MFMS/2S, Hansatech Instruments Ltd., Kings Lynne, U.K.) under PC control (Minirec version 2-1, Hansatech Instruments Ltd., U.K.). F0 was established with a low light source (583 nm light at 2 μmol m⁻² s⁻¹ PPFD), with a demodulator gain of 80 and a response time of 0-1 s. Saturating light (0-5 s pulses at a PPFD of 8500 μmol m⁻² s⁻¹) at 1 Hz frequency was supplied by a fiber optic cable carrying light from a Hansatech FLS1 light source and was used to determine maximal fluorescence (Fm). F70/Fm was calculated as:

\[
\frac{\text{maximal } F_m \text{ achieved} - F_0 \text{ averaged over 30 s after beam on}}{F_m}.
\]

Statistical analyses

Two-way (for A/Ci summer season gas exchange, and chlorophyll fluorescence data) and three-way (for diurnal data) split-plot repeated measures ANOVA models were used to test for significance of CO₂ concentration and time (General ANOVA/ANCOVA, Statistix version 4-0, Analytical Software, St. Paul, MN, U.S.A.). A/Ci data for *Larrea* were pooled by spring, summer, and fall samples, respectively.

In all analyses, CO₂ treatment was the whole-plot factor, with data pooled from each treatment ring to give three replicate measures for the whole-plot CO₂ factor. The CO₂ treatment × ring replicate was the whole-plot F-test denominator, while time (either sampling date, or season), and time × treatment interactions were the sub-plot factors, using the three-way interaction (CO₂ treatment × time × replicate) as the sub-plot F-test denominator. Of specific interest were the treatment × time interactions, which would indicate treatment-specific changes in plant function through time. F70/Fm data were arcsine transformed to meet ANOVA data distribution assumptions (Zar, 1974). An \(\alpha \) of 0-05 was considered significant, with *post hoc* General Linear Contrasts (Scheffe’s F) made using the appropriate error terms as the F-test denominator.

A student’s t-test was used to test for significant means differences between elevated and ambient CO₂ blower treatments on *Larrea* fresh weight Rubisco content. Comparisons were made for the two sampling dates (20 May and 29 October).

Results and discussion

During the summer growth season elevated CO₂ significantly stimulated net photosynthetic rate (Aₙₑᵗ) in *Larrea tridentata* (MS = 163-9; F = 22-7; 2, 6 df.). An approximate doubling of Aₙₑᵗ (13-2 vs. 6-9 μmol m⁻² s⁻¹ at elevated and ambient CO₂, respectively) was observed immediately following major rainfall events in early June and September. During the summer dry season (July and August; Fig. 1), Aₙₑᵗ in *Larrea* was ca. 80% higher at elevated CO₂ than at ambient CO₂ (7-0 vs. 3-9 μmol m⁻² s⁻¹). Since the plants in the current study had been exposed only to a short-term step increase in CO₂, as well as to an extended winter–spring drought, this 80–100% increase in Aₙₑᵗ can probably be viewed as an upper range of photosynthetic stimulation in this system. Therefore, the data clearly support hypothesis 1, that elevated CO₂ stimulates net photosynthesis during times of the year when environmental conditions are conducive to positive net CO₂ assimilation. However, we anticipate this response
Figure 1. Seasonal patterns in precipitation (a), net photosynthesis (A_{net}; (b)) and stomatal conductance (g_4; (c)) of *Larrea tridentata* under elevated CO$_2$ (550 μmol mol$^{-1}$; closed symbols) and ambient CO$_2$ (360 μmol mol$^{-1}$; open symbols). Ambient CO$_2$ treatments include ambient FACE rings (circles) and non-ring controls (triangles). Each data point is the mean of three measurements; bars indicate ± one SE of the mean.

to become less pronounced as plants are exposed to elevated CO$_2$ over longer time periods.

There was no apparent time \times treatment interaction, as A_{net} under elevated CO$_2$ mirrored the temporal patterns in ambient CO$_2$ plants in *Larrea* (Fig. 1). Elevated CO$_2$
did not extend productivity into the more stressful periods of the growing season (i.e. seasonal declines in A_{net} after the early June rain event were similar between ambient and elevated CO$_2$-grown plants), a hypothesized benefit of elevated CO$_2$ in arid and semi-arid systems (Melillo et al., 1993; Parton et al., 1994; Oechel et al., 1995). Therefore, hypothesis 2 was not supported by the data. This response in a desert shrub contrasts with observed patterns from semi-arid grasslands and chaparral, where seasonal drying and higher temperatures have been found to amplify the difference between ambient and elevated-CO$_2$-grown plants (Knapp et al., 1993, 1996; Oechel et al., 1995; Hunt et al., 1996; Hamerlynck et al., 1997).

Elevated CO$_2$ did not reduce stomatal conductance (g_s) in Larrea, even following significant rain (Fig. 1). Such low g_s — the highest reported here being lower than any reported in other field CO$_2$ studies — suggests desert shrubs with low g_s may not reduce stomatal conductance under elevated CO$_2$ as do plants growing in more favourable habitats (Jackson et al., 1994; Jacob et al., 1995; Knapp et al., 1996; Hamerlynck et al., 1997). However, even in plants with markedly higher g_s than reported here for Larrea, elevated CO$_2$ does not always induce lower g_s (Stirling et al., 1997; Pataki et al., 1998). The findings reported here suggest that stomatal acclimation to elevated CO$_2$ under field conditions may depend on the initial degree of stomatal opening, or might follow slower time-courses than those observed in controlled environment studies (Santrucek & Sage, 1996). Stomatal conductance in Larrea may have been relatively unresponsive to elevated CO$_2$ because of the high vapour pressure deficits that typify the Mojave Desert environment in summer, and also because summer rains are not as effective in recharging soil moisture as are winter rains (Smith et al., 1997). Controlled-environment studies with Larrea have shown that plant hydraulic conductivity is not responsive to growth in elevated CO$_2$ (Huxman et al., 1999). Since there were no differences in leaf temperature between CO$_2$ treatments in the microphyllous Larrea (data not shown), and therefore VPD would not be different, g_s is directly related to transpiration in this species. Because hydraulic conductivity and VPD were both similar at each CO$_2$ treatment, resulting in no differences in transpiration (at the leaf level), then g_s should also be similar. Furthermore, since g_s was not different between CO$_2$ treatments, plant water-use efficiency (WUE) mirrored increases in A_{net} (i.e. WUE was 80–100% greater at elevated CO$_2$).

A_{net} in Larrea was significantly higher on a diurnal basis under elevated CO$_2$ throughout the day (MS = 116.5; $F = 24.3$; 2, 6 df.), either shortly after a large rainfall event or over a month without precipitation (Fig. 2), without any significant date × treatment interaction. Stomatal conductance did not differ between CO$_2$ treatments, but changed in response to time of day (MS = 16-244; $F = 132.3$; 1, 42 df.) and date (MS = 18-209; $F = 148.3$; 1, 42 df.). There were significant interactions in g_s between CO$_2$ treatment and date (MS = 450.8; $F = 3.7$; 2, 42 df.), and time of day with date (MS = 2.343; $F = 19.1$; 3, 42 df.). Diurnal gas exchange data followed trends seen in seasonal measurements (Fig. 1). Elevated CO$_2$ did not extend photosynthetic activity longer into the day, even when soil moisture conditions might have been more conducive to prolonging activity. This result was probably due to g_s, and hence transpiration, being the same between treatments. When g_s is reduced under elevated CO$_2$, there is usually an increase in soil water reserves and improved plant water status brought about by lower transpiration (Field et al., 1995; Knapp et al., 1996). However, there was no increase in soil moisture content at either 0–15 cm or 15–30 cm depths in the elevated CO$_2$ rings in this first year of CO$_2$ enrichment at the Nevada Desert FACE site (data not shown).

The results from this study support hypothesis 3, that photosynthetic down-regulation in a desert shrub grown under elevated CO$_2$ depends on plant water status. For the evergreen Larrea, CO$_2$-saturated photosynthetic rate (A_{max}) and carboxylation efficiency (CE) were significantly lower under elevated CO$_2$ at higher plant water potentials (i.e. moist conditions). At more negative ψ values during drought conditions in the
spring, A_{max} was lower at elevated CO$_2$ and CE was similar at the two CO$_2$ concentrations (Table 1). A depression at elevated CO$_2$ in the photosynthetic capacity of *Larrea* under well-watered conditions (13% lower than at ambient CO$_2$) was concurrent with 19% lower leaf Rubisco content (Table 1; Student’s $t = 9.1$, $p < 0.001$). These findings suggest that down-regulation in *Larrea* may be transient, occurring only under conditions of high resource availability (Huxman *et al.*, 1998a), much as seasonal temperature patterns mediate photosynthetic responses to elevated CO$_2$ in other evergreen species (Lewis *et al.*, 1996). Drought has been found to reduce down-regulation, and even promote up-regulation, in evergreen chaparral species (Oechel *et al.*, 1995). Oechel *et al.* (1995) hypothesized that stomatal limitations during drought might reduce carbohydrate accumulation, thereby weakening feedbacks that would induce down-regulation under well-watered conditions. Also, fine root growth, a major factor linked to down-regulation in pot studies (Thomas & Strain, 1991), apparently does not change in *Larrea* under elevated CO$_2$ (BassiriRad *et al.*, 1997), which would potentially contribute to photosynthetic down-regulation if root growth following summer rains was greater at elevated CO$_2$. A primary project ongoing at the Nevada Desert FACE Facility is the seasonal quantification of fine root growth; these observations will allow an assessment to be made of how root growth may feed back to above-ground photosynthetic and growth processes.

Support of hypothesis 4 was more equivocal. F_v/F_m values at elevated CO$_2$ were ca. 7% higher ($p < 0.05$) under moist conditions and 4% higher (N.S.) under drought (Table 1). Therefore, hypothesis 4 was supported statistically under moist conditions, but it is doubtful that the magnitude difference (7 vs. 4%) is ecologically
Table 1. Effects of elevated CO$_2$ on CO$_2$-saturated photosynthetic rate (A_{max}; µmol m$^{-2}$ s$^{-1}$), carboxylation efficiency (CE; mmol m$^{-2}$ s$^{-1}$), Rubisco content (µg mg$^{-1}$ FW), and F_7/F_m ratio in leaves of Larrea tridentata growing at the Nevada Desert FACE Facility at low and high moisture stress. Plants at low moisture stress had midday water potentials of -2 to -4 MPa; plants at high moisture stress had midday water potentials of -6 to -7 MPa. Percent reduction refers to a change imposed in the parameter by the onset of stress. Asterisks after each 'elevated CO$_2$' data point indicate a significant difference from the ambient CO$_2$ data point directly above it; asterisks after percent reductions indicate a significant reduction in that parameter at high stress at that CO$_2$ treatment ($p = 0.05$ in each case).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CO$_2$ treatment</th>
<th>Low stress</th>
<th>High stress</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{max}</td>
<td>Ambient</td>
<td>32.8</td>
<td>20.4</td>
<td>37.8*</td>
</tr>
<tr>
<td></td>
<td>Elevated</td>
<td>28.6*</td>
<td>24.6</td>
<td>14.0*</td>
</tr>
<tr>
<td>CE</td>
<td>Ambient</td>
<td>0.111</td>
<td>0.100</td>
<td>9.9*</td>
</tr>
<tr>
<td></td>
<td>Elevated</td>
<td>0.091*</td>
<td>0.090</td>
<td>1.1</td>
</tr>
<tr>
<td>Rubisco content</td>
<td>Ambient</td>
<td>112.5</td>
<td>62.1</td>
<td>44.8*</td>
</tr>
<tr>
<td></td>
<td>Elevated</td>
<td>91.2*</td>
<td>57.1</td>
<td>37.4*</td>
</tr>
<tr>
<td>F_7/F_m ratio</td>
<td>Ambient</td>
<td>0.611</td>
<td>0.530</td>
<td>13.3*</td>
</tr>
<tr>
<td></td>
<td>Elevated</td>
<td>0.656</td>
<td>0.550</td>
<td>16.2*</td>
</tr>
</tbody>
</table>

meaningful. Indeed, Hymus et al. (1999) found little stimulation of F_7/F_m under elevated CO$_2$ in loblolly pine during periods of low active growth. Probable of greatest importance is the fact that F_7/F_m values for Larrea during both drought and well-watered conditions were above values reported to accompany inhibition of photosynthesis at high temperatures (Giardi et al., 1996; Loik & Harte, 1996; Roden & Ball, 1996; Huxman et al., 1998b). F_7/F_m under droughted conditions were reduced 13–16% compared to well-watered conditions (Table 1; MS = 0.07; $F = 58.2$; 1, 6 df.), and are comparable to levels correlated with high photosynthetic capacity achieved under more controlled conditions (Bilger et al., 1995; Loik & Harte, 1996). This suggests that Larrea is able to balance photochemical utilization of light with carbon acquisition processes under extreme stress conditions, yet it is able to rapidly respond to favourable conditions, an attribute that has long been associated with the functional ecology of Larrea (Oechel et al., 1972; Smith et al., 1997). Perhaps because of the extreme physiological ‘plasticity’ of Larrea in response to stress, its stress tolerance system is not particularly responsive to elevated CO$_2$ per se.

Overall, the findings of this study show that elevated CO$_2$ could markedly increase productivity of Mojave Desert shrubs during periods of normally low photosynthetic activity in dry seasons (Fig. 1), and that desert shrubs have the capacity for regulatory responses to elevated CO$_2$. The coupling of regulatory responses with water status may be important in desert systems. South-western desert community structure and individual species performance are strongly influenced by spatially distinct patterns of soil horizon development that determine seasonal soil hydrology (McAuliffe, 1994; Smith et al., 1995), which in turn may result in complex patterns of photosynthetic and productivity responses to elevated CO$_2$ across desert landscapes. Furthermore, if stomatal conductance is not responsive to elevated CO$_2$ during extended dry periods, then proposed enhancements in water balance due to reductions in plant transpiration at elevated CO$_2$ may not be realized in desert ecosystems that are dominated by extensive or unpredictable dry seasons. Knowledge of canopy and root dynamics, as well as continued monitoring of photosynthetic and stomatal responses over extended periods, will be needed across the full spectrum of plant life forms before conclusive statements
can be made about the actual impacts of elevated CO$_2$ on arid-land ecosystems. These studies are ongoing at the Nevada Desert FACE Facility.

We would like to thank Craig Biggart, Lesley Ann Defalco, Kevin Griffin, Brandon Moore, Daniel Sims, Dianne Stortz-Lintz and Phillipe Vivin for their help during this project. We also greatly appreciate the logistical and technical support at the Nevada Test Site from the many employees of the U.S. DOE Nevada Operations Office and of Bechtel Nevada, who assisted with this project. This research was supported by a NSF Terrestrial Ecology and Global Change Initiative (TECO) grant (IBN-9524036) to S.D. Smith, a DOE Terrestrial Ecology and Global Change Initiative grant to R.S. Nowak, and a DOE-EPSCoR grant to the Nevada Global Environmental Change Research Group.

References

